速習!時系列予測Transformer属#
近年盛んに提案されている多変量時系列予測のためのTransformerモデルのサーベイを行いました。
それぞれの手法のアイデアについて簡単にまとめています。
参考文献#
Vaswani, A., Shazeer, N.M., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., & Polosukhin, I. (2017). Attention is All you Need. Neural Information Processing Systems.
Li, S., Jin, X., Xuan, Y., Zhou, X., Chen, W., Wang, Y. X., & Yan, X. (2019). Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting. Advances in neural information processing systems, 32.
Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H., & Zhang, W. (2021, May). Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings of the AAAI conference on artificial intelligence (Vol. 35, No. 12, pp. 11106-11115).
Wu, H., Xu, J., Wang, J., & Long, M. (2021). Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting. Advances in neural information processing systems, 34, 22419-22430.
Zhou, T., Ma, Z., Wen, Q., Wang, X., Sun, L., & Jin, R. (2022, June). Fedformer: Frequency enhanced decomposed transformer for long-term series forecasting. In International conference on machine learning (pp. 27268-27286). PMLR.
Zhao, L., & Shen, Y. (2024). Rethinking Channel Dependence for Multivariate Time Series Forecasting: Learning from Leading Indicators. ICLR 2024
Nie, Y., Nguyen, N. H., Sinthong, P., & Kalagnanam, J. (2022). A time series is worth 64 words: Long-term forecasting with transformers. arXiv preprint arXiv:2211.14730.
Zhang, Y., & Yan, J. (2023, May). Crossformer: Transformer utilizing cross-dimension dependency for multivariate time series forecasting. In The eleventh international conference on learning representations.
Cao, H., Huang, Z., Yao, T., Wang, J., He, H., & Wang, Y. (2023, June). Inparformer: Evolutionary decomposition transformers with interactive parallel attention for long-term time series forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 37, No. 6, pp. 6906-6915).
Liu, Y., Hu, T., Zhang, H., Wu, H., Wang, S., Ma, L., & Long, M. (2023). itransformer: Inverted transformers are effective for time series forecasting. arXiv preprint arXiv:2310.06625.
Kim, T., Kim, J., Tae, Y., Park, C., Choi, J. H., & Choo, J. (2021, May). Reversible instance normalization for accurate time-series forecasting against distribution shift. In International Conference on Learning Representations.
Liu, Y., Wu, H., Wang, J., & Long, M. (2022). Non-stationary transformers: Exploring the stationarity in time series forecasting. Advances in Neural Information Processing Systems, 35, 9881-9893.